
GIT a supporto dei tecnici UNIV

18 Novembre 2025

const whoami = {

 firstName: 'Marco',

 lastName: 'Spasiano',

1

2

3

 age: 52,4

 city: 'Napoli',5

 company: {6

 acronym: 'CNR', 7

 description: 'Consiglio Nazionale delle Ricerche',8

 office: 'UFFICIO AGENDA DIGITALE E PROCESSI',9

 profile: 'Primo Tecnologo'10

 },11

 contacts: {12

 email: 'marco.spasiano@cnr.it',13

 github: 'https://github.com/mspasiano'14

 }15

}16

 age: 52,

 city: 'Napoli',

const whoami = {1

 firstName: 'Marco',2

 lastName: 'Spasiano',3

4

5

 company: {6

 acronym: 'CNR', 7

 description: 'Consiglio Nazionale delle Ricerche',8

 office: 'UFFICIO AGENDA DIGITALE E PROCESSI',9

 profile: 'Primo Tecnologo'10

 },11

 contacts: {12

 email: 'marco.spasiano@cnr.it',13

 github: 'https://github.com/mspasiano'14

 }15

}16

 company: {

 acronym: 'CNR',

 description: 'Consiglio Nazionale delle Ricerche',

 office: 'UFFICIO AGENDA DIGITALE E PROCESSI',

 profile: 'Primo Tecnologo'

 },

const whoami = {1

 firstName: 'Marco',2

 lastName: 'Spasiano',3

 age: 52,4

 city: 'Napoli',5

6

7

8

9

10

11

 contacts: {12

 email: 'marco.spasiano@cnr.it',13

 github: 'https://github.com/mspasiano'14

 }15

}16

 contacts: {

 email: 'marco.spasiano@cnr.it',

 github: 'https://github.com/mspasiano'

 }

const whoami = {1

 firstName: 'Marco',2

 lastName: 'Spasiano',3

 age: 52,4

 city: 'Napoli',5

 company: {6

 acronym: 'CNR', 7

 description: 'Consiglio Nazionale delle Ricerche',8

 office: 'UFFICIO AGENDA DIGITALE E PROCESSI',9

 profile: 'Primo Tecnologo'10

 },11

12

13

14

15

}16

1

Chieti 18 Novembre 2025 GIT a supporto dei tecnici UNIV

Trasferimento e Condivisione della

conoscenza

La storia dell’umanità è, prima di tutto, la

storia del trasferimento della conoscenza. Dalla

parola orale alla scrittura, dalla stampa fino al

mondo digitale, ogni progresso è nato dalla

capacità di trasmettere, condividere e

trasformare ciò che sappiamo.

Nel Medioevo la conoscenza passava dai maestri

agli apprendisti; nel Rinascimento circolava tra

le accademie e le corti; oggi viaggia in tempo

reale attraverso reti globali, università e

imprese.

2 . 1

Chieti 18 Novembre 2025 GIT a supporto dei tecnici UNIV

Nel corso dei secoli, anche i supporti utilizzati

per trasferire la conoscenza si sono evoluti

profondamente. All’inizio erano la tradizione

orale e la memoria collettiva, strumenti fragili

ma potenti, grazie ai quali miti, riti e tecniche

venivano tramandati di generazione in

generazione.

Poi arrivò la scrittura, che rese possibile

fissare il sapere nel tempo: dalle tavolette

d’argilla alle pergamene, fino ai manoscritti

custoditi nei monasteri.

Con l’invenzione della stampa a caratteri mobili,

la conoscenza uscì dalle biblioteche e divenne

patrimonio condiviso, contribuendo in modo

decisivo alla diffusione delle idee scientifiche

e umanistiche del Rinascimento.

2 . 2

Chieti 18 Novembre 2025 GIT a supporto dei tecnici UNIV

Questo flusso continuo di saperi ha

portato tre vantaggi fondamentali:

INNOVAZIONE CI PERMETTE DI COSTRUIRE SU ESPERIENZE GIÀ ACQUISITE, ACCELERANDO IL

PROGRESSO SCIENTIFICO E TECNOLOGICO.

EFFICIENZA CONDIVIDERE BUONE PRATICHE RIDUCE GLI ERRORI E MIGLIORA LA PRODUTTIVITÀ

DELLE ORGANIZZAZIONI.

CRESCITA COLLETTIVA DIFFONDERE CONOSCENZA SIGNIFICA DIFFONDERE OPPORTUNITÀ: FAVORISCE

SVILUPPO ECONOMICO, DIALOGO CULTURALE E COESIONE SOCIALE.

Oggi, nel pieno dell’era digitale, il

trasferimento della conoscenza è ancora più

strategico. Non basta accumulare informazioni:

serve la capacità di trasformarle in valore, di

adattarle e di farle circolare tra persone,

istituzioni e generazioni.

2 . 3

Chieti 18 Novembre 2025 GIT a supporto dei tecnici UNIV

Linus Torvalds

La nascita di GIT (2005)

I motivi che hanno spinto Linus

Torvalds a creare Git nel 2005

sono stati principalmente

legati alla crisi del sistema

di controllo versione che il

kernel Linux stava utilizzando.

3 . 1

Chieti 18 Novembre 2025 GIT a supporto dei tecnici UNIV

Il Problema con BitKeeper (2005)

BitKeeper Crisis: Fino al 2005, il progetto del

kernel Linux utilizzava BitKeeper, un sistema di

controllo versione distribuito proprietario.

La società BitMover aveva concesso una licenza

gratuita per progetti open source, ma nell'aprile

2005 revocò questa licenza gratuita dopo dispute

riguardanti il reverse engineering del protocollo

da parte di alcuni sviluppatori della community

Linux.

3 . 2

Chieti 18 Novembre 2025 GIT a supporto dei tecnici UNIV

Le Frustrazioni di Linus

Sistemi Esistenti Inadeguati

CVS: Troppo lento e centralizzato, non gestiva

bene i merge

Subversion: Ancora centralizzato, non

abbastanza veloce per un progetto delle

dimensioni del kernel Linux

Altri sistemi distribuiti: Non esistevano o

erano troppo complessi/lenti

3 . 3

Chieti 18 Novembre 2025 GIT a supporto dei tecnici UNIV

Le Critiche ai Sistemi Esistenti

Linus era particolarmente critico verso:

CVS/Subversion:

"CVS è l'esempio di cosa NON fare"

Troppo lento per operazioni su larga scala

Merge problematici

Modello centralizzato inadeguato

Altri DVCS(Distributed Version Control

System) dell'epoca:

Monotone: Troppo lento, design over-engineered

Darcs: Problemi di performance con repository

grandi

Bazaar: Non esisteva ancora in forma

utilizzabile

3 . 4

Chieti 18 Novembre 2025 GIT a supporto dei tecnici UNIV

Requisiti Specifici del Kernel Linux

Scale massive: Migliaia di sviluppatori,

milioni di righe di codice

Merge frequenti: Centinaia di patch al giorno

da integrare

Velocità: Operazioni che dovevano completarsi

in secondi, non minuti

Integrità: Garanzia assoluta che i dati non

fossero corrotti

Workflow distribuito: Sviluppatori in tutto il

mondo senza server centrale

3 . 5

Chieti 18 Novembre 2025 GIT a supporto dei tecnici UNIV

La "Crisi" del Weekend

Timeline critica:

- 3 Aprile 2005: BitMover annuncia la fine della licenza gratuita1

- 6-7 Aprile 2005: Linus inizia a sviluppare Git2

- 7 Aprile 2005: Primo commit di Git3

- 16 Aprile 2005: Git si auto-ospita (Git gestisce il proprio codice sorgente)4

- 26 Luglio 2005: Primo kernel Linux gestito con Git5

- 3 Aprile 2005: BitMover annuncia la fine della licenza gratuita

- 6-7 Aprile 2005: Linus inizia a sviluppare Git

1

2

- 7 Aprile 2005: Primo commit di Git3

- 16 Aprile 2005: Git si auto-ospita (Git gestisce il proprio codice sorgente)4

- 26 Luglio 2005: Primo kernel Linux gestito con Git5

- 3 Aprile 2005: BitMover annuncia la fine della licenza gratuita

- 6-7 Aprile 2005: Linus inizia a sviluppare Git

- 7 Aprile 2005: Primo commit di Git

1

2

3

- 16 Aprile 2005: Git si auto-ospita (Git gestisce il proprio codice sorgente)4

- 26 Luglio 2005: Primo kernel Linux gestito con Git5

- 3 Aprile 2005: BitMover annuncia la fine della licenza gratuita

- 6-7 Aprile 2005: Linus inizia a sviluppare Git

- 7 Aprile 2005: Primo commit di Git

- 16 Aprile 2005: Git si auto-ospita (Git gestisce il proprio codice sorgente)

1

2

3

4

- 26 Luglio 2005: Primo kernel Linux gestito con Git5

- 3 Aprile 2005: BitMover annuncia la fine della licenza gratuita

- 6-7 Aprile 2005: Linus inizia a sviluppare Git

- 7 Aprile 2005: Primo commit di Git

- 16 Aprile 2005: Git si auto-ospita (Git gestisce il proprio codice sorgente)

- 26 Luglio 2005: Primo kernel Linux gestito con Git

1

2

3

4

5

3 . 6

Chieti 18 Novembre 2025 GIT a supporto dei tecnici UNIV

Filosofia di Design di Git

Linus aveva requisiti molto specifici:

Performance

Integrità dei Dati

Ogni oggetto è identificato dal suo hash SHA-1

Impossibile corrompere file senza accorgersene

Verifica automatica dell'integrità

"Git is designed to be very fast. All

operations should complete in a few

seconds at most"

“

”

3 . 7

Chieti 18 Novembre 2025 GIT a supporto dei tecnici UNIV

Semplicità Concettuale

Poche operazioni primitive ma potenti

Modello di dati semplice (blob, tree, commit,

tag)

Supporto per Workflow Non-lineari

Branch rapidi e economici

Merge intelligente e automatico

Supporto per migliaia di branch paralleli

3 . 8

Chieti 18 Novembre 2025 GIT a supporto dei tecnici UNIV

Il Fattore Personalità

Pragmatismo Estremo

Linus voleva qualcosa che "funzionasse

semplicemente" senza filosofie complicate:

Controllo Totale

Dopo l'esperienza con BitKeeper, Linus voleva:

Nessuna dipendenza da software proprietario

Controllo completo degli algoritmi e delle

decisioni di design

Garanzia che non si ripetesse mai più una

"crisi BitKeeper"

"I'm an engineer. I see a problem and I

fix it"

“

”

3 . 9

Chieti 18 Novembre 2025 GIT a supporto dei tecnici UNIV

L'Urgenza della Situazione

La community Linux aveva bisogno di una soluzione

immediata:

Il successivo rilascio del kernel (2.6.12) era

imminente

Migliaia di patch in attesa di essere integrate

Impossibilità di tornare a sistemi primitivi

come patch e tar

3 . 10

Chieti 18 Novembre 2025 GIT a supporto dei tecnici UNIV

Risultato

Git fu sviluppato in tempo record:

2 settimane per la prima versione funzionante

3 mesi per diventare il sistema ufficiale del

kernel Linux

Meno di 1 anno per diventare lo standard de

facto per progetti open source

3 . 11

Chieti 18 Novembre 2025 GIT a supporto dei tecnici UNIV

La Filosofia "Do One Thing Well"

Linus applicò la filosofia Unix anche a Git:

Ogni comando fa una cosa specifica molto bene

Componibilità: i comandi si combinano per

operazioni complesse

Efficienza: ottimizzato per le operazioni più

comuni

Citazione famosa di Linus:

"I really never wanted to do source

control management at all and felt that it

was just about the least interesting thing

in the computing world, but somebody had

to do it."

“

”3 . 12

Chieti 18 Novembre 2025 GIT a supporto dei tecnici UNIV

IN CONCLUSIONE

La creazione di Git fu quindi una necessità

pratica urgente più che una passione per i

sistemi di controllo versione, ma il risultato fu

rivoluzionario per l'intero mondo dello sviluppo

software.

Problemi risolti

Gestione versioni distribuite

Collaborazione in team

Tracciabilità delle modifiche

3 . 13

Chieti 18 Novembre 2025 GIT a supporto dei tecnici UNIV

Git - Concetti Fondamentali

Concetti Base

Repository: cartella "intelligente" con

cronologia

Commit: snapshot del lavoro

Staging Area: area di preparazione

Working Directory: cartella di lavoro

Branch: linee di sviluppo parallele

4 . 1

Chieti 18 Novembre 2025 GIT a supporto dei tecnici UNIV

Git - Repository

Un repository Git (o repo) è lo spazio in cui viene

memorizzato e gestito il codice sorgente di un progetto,

insieme alla storia completa delle modifiche.

In sintesi:

È un archivio che contiene file, cartelle e versioni

del progetto nel tempo

Permette a più sviluppatori di collaborare,

condividere modifiche, ripristinare versioni

precedenti e gestire rami di sviluppo (branch)

Un repository può essere:

Locale → sul computer dello sviluppatore (git init)

Remoto → su una piattaforma come GitHub, GitLab o

Bitbucket, per la collaborazione online.

💡 In breve un repository Git è la memoria storica e

collaborativa del codice di un progetto.

4 . 2

Chieti 18 Novembre 2025 GIT a supporto dei tecnici UNIV

Git - Commit

Un git commit è un’istantanea (snapshot) dello

stato del progetto in un determinato momento.

In pratica:

Registra le modifiche apportate ai file nel

repository

Include un messaggio descrittivo che spiega

cosa è stato cambiato

Diventa parte della cronologia del progetto,

permettendo di tornare indietro o confrontare

versioni

💡 In breve: Un commit è come un “salvataggio”

ufficiale del progetto nel tempo, con autore,

data e descrizione delle modifiche

4 . 3

Chieti 18 Novembre 2025 GIT a supporto dei tecnici UNIV

Git - Staging Area

La staging area (o area di preparazione) è una

zona intermedia di Git dove vengono raccolte le

modifiche prima di confermarle con un commit.

In pratica:

Permette di scegliere quali file o modifiche

includere nel prossimo commit

Funziona come un “piano di lavoro temporaneo”

tra il working directory e il repository

💡 In breve: La staging area è l’area in cui

prepari con precisione ciò che verrà salvato

nel prossimo commit

4 . 4

Chieti 18 Novembre 2025 GIT a supporto dei tecnici UNIV

Git - Working Directory

La working directory è la cartella del progetto

sul tuo computer dove lavori sui file tracciati

da Git.

In pratica:

Contiene la versione attuale dei file del

repository

È l’area in cui modifichi, aggiungi o elimini

file prima di metterli in staging o fare un

commit

💡 In breve: La working directory è lo spazio

di lavoro locale in cui apporti le modifiche al

progetto gestito da Git

4 . 5

Chieti 18 Novembre 2025 GIT a supporto dei tecnici UNIV

Git - Branch

Un branch in Git è un ramo di sviluppo

indipendente che consente di lavorare su nuove

funzionalità o correzioni senza modificare il

codice principale.

In pratica:

Ogni branch rappresenta una linea separata di

sviluppo

Puoi creare, unire o eliminare branch per

gestire versioni o funzionalità diverse del

progetto

💡 In breve: Un branch è una copia del codice

su cui puoi lavorare in parallelo, senza

influenzare il ramo principale (main o master).

4 . 6

Chieti 18 Novembre 2025 GIT a supporto dei tecnici UNIV

Setup dell'Ambiente

🛠️ HANDS-ON: Preparazione workstation

Installazione GIT sui notebook dei partecipanti

Windows

1. Vai su

2. Scarica il file Git-<version>.exe

3. Esegui l’installer e segui la procedura guidata:

Mantieni le opzioni predefinite consigliate.

Seleziona “Git Bash Here” per aggiungere Git

al menu contestuale.

4. Al termine, apri Git Bash e verifica:

https://git-scm.com/download/win

git --version

5 . 1

Chieti 18 Novembre 2025 GIT a supporto dei tecnici UNIV

https://git-scm.com/download/win

macOS

Installa Homebrew se non lo hai già, e poi

installa Git:

Metodo 2 — Tramite Xcode Command Line Tools

Verifica l’installazione:

brew install git

xcode-select --install

git --version

5 . 2

Chieti 18 Novembre 2025 GIT a supporto dei tecnici UNIV

Linux

Ubuntu / Debian

Fedora

CentOS / RHEL

Arch Linux

Verifica l’installazione:

sudo apt update

sudo apt install git -y

sudo dnf install git -y

sudo yum install git -y

sudo pacman -S git

git --version

5 . 3

Chieti 18 Novembre 2025 GIT a supporto dei tecnici UNIV

Configurazione iniziale:

Setup editor preferito (VS Code, nano, vim)

Il --global fa si che imposta Nano come editor

predefinito per tutti i repository Git

Per VS Code invece:

git config --global user.name "Nome Cognome"

git config --global user.email "email@unich.it"

git config --global init.defaultBranch main

git config core.editor "vim"

git config --global core.editor "nano"

git config --global core.editor "code --wait"

Se si vuole usare VS Code anche per risolvere conflitti

git config --global merge.tool vscode

git config --global mergetool.vscode.cmd "code --wait $MERGED"

git config --global diff.tool vscode

git config --global difftool.vscode.cmd "code --wait --diff $LOCAL $REMOTE"

6 . 1

Chieti 18 Novembre 2025 GIT a supporto dei tecnici UNIV

Il Primo Repository

🛠️ HANDS-ON: Creazione repository

Creiamo una cartella per documentazione IT

mkdir doc-procedure-it

cd doc-procedure-it

git init

1

2

3

4

 5

Primo file: procedura backup6

echo "# Procedure di Backup Server" > backup-procedure.md7

echo "## Backup giornaliero" >> backup-procedure.md8

echo "1. Verifica spazio disco" >> backup-procedure.md9

 10

git add backup-procedure.md11

git commit -m "Prima versione procedura backup"12

Primo file: procedura backup

echo "# Procedure di Backup Server" > backup-procedure.md

echo "## Backup giornaliero" >> backup-procedure.md

echo "1. Verifica spazio disco" >> backup-procedure.md

Creiamo una cartella per documentazione IT1

mkdir doc-procedure-it2

cd doc-procedure-it3

git init4

 5

6

7

8

9

 10

git add backup-procedure.md11

git commit -m "Prima versione procedura backup"12

git add backup-procedure.md

git commit -m "Prima versione procedura backup"

Creiamo una cartella per documentazione IT1

mkdir doc-procedure-it2

cd doc-procedure-it3

git init4

 5

Primo file: procedura backup6

echo "# Procedure di Backup Server" > backup-procedure.md7

echo "## Backup giornaliero" >> backup-procedure.md8

echo "1. Verifica spazio disco" >> backup-procedure.md9

 10

11

12

6 . 2

Chieti 18 Novembre 2025 GIT a supporto dei tecnici UNIV

Lavorare con i File

🛠️ HANDS-ON: Modifiche e commit

Aggiungiamo un file binario (simuliamo un PDF)

cp /path/to/sample.pdf checklist-backup.pdf

git add checklist-backup.pdf

1

2

3

 4

Modifichiamo il file esistente5

echo "2. Esecuzione script backup.sh" >> backup-procedure.md6

echo "3. Verifica log errori" >> backup-procedure.md7

 8

git add backup-procedure.md9

git commit -m "Aggiunta checklist e nuovi passi procedura"10

 11

Vediamo la storia12

git log --oneline13

git diff HEAD~1 HEAD14

Modifichiamo il file esistente

echo "2. Esecuzione script backup.sh" >> backup-procedure.md

echo "3. Verifica log errori" >> backup-procedure.md

Aggiungiamo un file binario (simuliamo un PDF)1

cp /path/to/sample.pdf checklist-backup.pdf2

git add checklist-backup.pdf3

 4

5

6

7

 8

git add backup-procedure.md9

git commit -m "Aggiunta checklist e nuovi passi procedura"10

 11

Vediamo la storia12

git log --oneline13

git diff HEAD~1 HEAD14

git add backup-procedure.md

git commit -m "Aggiunta checklist e nuovi passi procedura"

Aggiungiamo un file binario (simuliamo un PDF)1

cp /path/to/sample.pdf checklist-backup.pdf2

git add checklist-backup.pdf3

 4

Modifichiamo il file esistente5

echo "2. Esecuzione script backup.sh" >> backup-procedure.md6

echo "3. Verifica log errori" >> backup-procedure.md7

 8

9

10

 11

Vediamo la storia12

git log --oneline13

git diff HEAD~1 HEAD14

Vediamo la storia

git log --oneline

git diff HEAD~1 HEAD

Aggiungiamo un file binario (simuliamo un PDF)1

cp /path/to/sample.pdf checklist-backup.pdf2

git add checklist-backup.pdf3

 4

Modifichiamo il file esistente5

echo "2. Esecuzione script backup.sh" >> backup-procedure.md6

echo "3. Verifica log errori" >> backup-procedure.md7

 8

git add backup-procedure.md9

git commit -m "Aggiunta checklist e nuovi passi procedura"10

 11

12

13

14

6 . 3

Chieti 18 Novembre 2025 GIT a supporto dei tecnici UNIV

Gestione Avanzata Locale

Navigare nella Storia

🛠️ HANDS-ON: Esplorare i commit

Vediamo cosa è cambiato

git log --stat

git log --graph --oneline

1

2

3

 4

Torniamo indietro per vedere una versione precedente5

git checkout HEAD~16

cat backup-procedure.md7

 8

Torniamo al presente9

git checkout main10

 11

Correggiamo l'ultimo commit12

echo "4. Notifica completamento backup" >> backup-procedure.md13

git add backup-procedure.md14

git commit --amend -m "Procedura backup completa con notifiche"15

Torniamo indietro per vedere una versione precedente

git checkout HEAD~1

cat backup-procedure.md

Vediamo cosa è cambiato1

git log --stat2

git log --graph --oneline3

 4

5

6

7

 8

Torniamo al presente9

git checkout main10

 11

Correggiamo l'ultimo commit12

echo "4. Notifica completamento backup" >> backup-procedure.md13

git add backup-procedure.md14

git commit --amend -m "Procedura backup completa con notifiche"15

Torniamo al presente

git checkout main

Vediamo cosa è cambiato1

git log --stat2

git log --graph --oneline3

 4

Torniamo indietro per vedere una versione precedente5

git checkout HEAD~16

cat backup-procedure.md7

 8

9

10

 11

Correggiamo l'ultimo commit12

echo "4. Notifica completamento backup" >> backup-procedure.md13

git add backup-procedure.md14

git commit --amend -m "Procedura backup completa con notifiche"15

Correggiamo l'ultimo commit

echo "4. Notifica completamento backup" >> backup-procedure.md

git add backup-procedure.md

git commit --amend -m "Procedura backup completa con notifiche"

Vediamo cosa è cambiato1

git log --stat2

git log --graph --oneline3

 4

Torniamo indietro per vedere una versione precedente5

git checkout HEAD~16

cat backup-procedure.md7

 8

Torniamo al presente9

git checkout main10

 11

12

13

14

15

6 . 4

Chieti 18 Novembre 2025 GIT a supporto dei tecnici UNIV

Gestione dei Branch

🛠️ HANDS-ON: Creazione e uso branch

Creiamo un branch per una nuova procedura

git checkout -b procedura-restore

1

2

 3

Nuovo file per restore4

echo "# Procedure di Restore Server" > restore-procedure.md5

echo "1. Identificazione backup da ripristinare" >> restore-procedure.md6

git add restore-procedure.md7

git commit -m "Inizio procedura restore"8

 9

Torniamo su main e vediamo la differenza10

git checkout main11

ls # restore-procedure.md non c'è12

git checkout procedura-restore13

ls # restore-procedure.md c'è14

 15

Merge del branch16

git checkout main17

git merge procedura-restore18

Nuovo file per restore

echo "# Procedure di Restore Server" > restore-procedure.md

echo "1. Identificazione backup da ripristinare" >> restore-procedure.md

git add restore-procedure.md

git commit -m "Inizio procedura restore"

Creiamo un branch per una nuova procedura1

git checkout -b procedura-restore2

 3

4

5

6

7

8

 9

Torniamo su main e vediamo la differenza10

git checkout main11

ls # restore-procedure.md non c'è12

git checkout procedura-restore13

ls # restore-procedure.md c'è14

 15

Merge del branch16

git checkout main17

git merge procedura-restore18

Torniamo su main e vediamo la differenza

git checkout main

ls # restore-procedure.md non c'è

git checkout procedura-restore

ls # restore-procedure.md c'è

Creiamo un branch per una nuova procedura1

git checkout -b procedura-restore2

 3

Nuovo file per restore4

echo "# Procedure di Restore Server" > restore-procedure.md5

echo "1. Identificazione backup da ripristinare" >> restore-procedure.md6

git add restore-procedure.md7

git commit -m "Inizio procedura restore"8

 9

10

11

12

13

14

 15

Merge del branch16

git checkout main17

git merge procedura-restore18

Merge del branch

git checkout main

git merge procedura-restore

Creiamo un branch per una nuova procedura1

git checkout -b procedura-restore2

 3

Nuovo file per restore4

echo "# Procedure di Restore Server" > restore-procedure.md5

echo "1. Identificazione backup da ripristinare" >> restore-procedure.md6

git add restore-procedure.md7

git commit -m "Inizio procedura restore"8

 9

Torniamo su main e vediamo la differenza10

git checkout main11

ls # restore-procedure.md non c'è12

git checkout procedura-restore13

ls # restore-procedure.md c'è14

 15

16

17

18

6 . 5

Chieti 18 Novembre 2025 GIT a supporto dei tecnici UNIV

Collaborazione e Strumenti Avanzati

Repository Remoti

🛠️ HANDS-ON: Personal Access Token su GitHub

Vai su

Clicca su “Generate new token (classic)”

Dai un nome al token (es. git-training)

Imposta la durata (es. 7 giorni)

Seleziona i permessi minimi:

✅ repo → per gestire repository privati/pubblici

Clicca Generate token

Copia il token una sola volta — non potrai

rivederlo!

https://github.com/settings/tokens

7 . 1

Chieti 18 Novembre 2025 GIT a supporto dei tecnici UNIV

https://github.com/settings/tokens

Lavoro Distribuito

🛠️ HANDS-ON: Cloniamo repository su GitHub

Cloniamo un repository esistente su GitHub

git clone https://github.com/training-it-unich/esempio-documentazione.git

cd esempio-documentazione

1

2

3

 4

Esploriamo il repository5

git status6

git log --oneline7

git remote -v8

 9

Creiamo un nuovo repo sulla nostra organizzazione GitHub10

Che chiamiamo doc-procedure-it (tramite interfaccia web)11

 12

Aggiungiamo il nostro repo locale come remoto13

cd ../doc-procedure-it14

git remote add origin https://<TOKEN>@github.com/training-it-unich/doc-procedure-it.git15

 16

Push del nostro lavoro17

git push -u origin main18

Esploriamo il repository

git status

git log --oneline

git remote -v

Cloniamo un repository esistente su GitHub1

git clone https://github.com/training-it-unich/esempio-documentazione.git2

cd esempio-documentazione3

 4

5

6

7

8

 9

Creiamo un nuovo repo sulla nostra organizzazione GitHub10

Che chiamiamo doc-procedure-it (tramite interfaccia web)11

 12

Aggiungiamo il nostro repo locale come remoto13

cd ../doc-procedure-it14

git remote add origin https://<TOKEN>@github.com/training-it-unich/doc-procedure-it.git15

 16

Push del nostro lavoro17

git push -u origin main18

Creiamo un nuovo repo sulla nostra organizzazione GitHub

Che chiamiamo doc-procedure-it (tramite interfaccia web)

Cloniamo un repository esistente su GitHub1

git clone https://github.com/training-it-unich/esempio-documentazione.git2

cd esempio-documentazione3

 4

Esploriamo il repository5

git status6

git log --oneline7

git remote -v8

 9

10

11

 12

Aggiungiamo il nostro repo locale come remoto13

cd ../doc-procedure-it14

git remote add origin https://<TOKEN>@github.com/training-it-unich/doc-procedure-it.git15

 16

Push del nostro lavoro17

git push -u origin main18

Aggiungiamo il nostro repo locale come remoto

cd ../doc-procedure-it

git remote add origin https://<TOKEN>@github.com/training-it-unich/doc-procedure-it.git

Cloniamo un repository esistente su GitHub1

git clone https://github.com/training-it-unich/esempio-documentazione.git2

cd esempio-documentazione3

 4

Esploriamo il repository5

git status6

git log --oneline7

git remote -v8

 9

Creiamo un nuovo repo sulla nostra organizzazione GitHub10

Che chiamiamo doc-procedure-it (tramite interfaccia web)11

 12

13

14

15

 16

Push del nostro lavoro17

git push -u origin main18

Push del nostro lavoro

git push -u origin main

Cloniamo un repository esistente su GitHub1

git clone https://github.com/training-it-unich/esempio-documentazione.git2

cd esempio-documentazione3

 4

Esploriamo il repository5

git status6

git log --oneline7

git remote -v8

 9

Creiamo un nuovo repo sulla nostra organizzazione GitHub10

Che chiamiamo doc-procedure-it (tramite interfaccia web)11

 12

Aggiungiamo il nostro repo locale come remoto13

cd ../doc-procedure-it14

git remote add origin https://<TOKEN>@github.com/training-it-unich/doc-procedure-it.git15

 16

17

18

7 . 2

Chieti 18 Novembre 2025 GIT a supporto dei tecnici UNIV

Collaborazione Base

🛠️ HANDS-ON: Push e Pull

Simuliamo lavoro di un collega (dal docente)

Modifica da interfaccia web GitHub

1

2

 3

I partecipanti fanno pull4

git pull origin main5

 6

Ogni partecipante fa una modifica locale7

echo "## Procedura di Monitoring" >> backup-procedure.md8

echo "- Controllo stato servizi ogni 30 min" >> backup-procedure.md9

 10

git add backup-procedure.md11

git commit -m "Aggiunta sezione monitoring"12

 13

Push delle modifiche14

git push origin main15

I partecipanti fanno pull

git pull origin main

Simuliamo lavoro di un collega (dal docente)1

Modifica da interfaccia web GitHub2

 3

4

5

 6

Ogni partecipante fa una modifica locale7

echo "## Procedura di Monitoring" >> backup-procedure.md8

echo "- Controllo stato servizi ogni 30 min" >> backup-procedure.md9

 10

git add backup-procedure.md11

git commit -m "Aggiunta sezione monitoring"12

 13

Push delle modifiche14

git push origin main15

Ogni partecipante fa una modifica locale

echo "## Procedura di Monitoring" >> backup-procedure.md

echo "- Controllo stato servizi ogni 30 min" >> backup-procedure.md

Simuliamo lavoro di un collega (dal docente)1

Modifica da interfaccia web GitHub2

 3

I partecipanti fanno pull4

git pull origin main5

 6

7

8

9

 10

git add backup-procedure.md11

git commit -m "Aggiunta sezione monitoring"12

 13

Push delle modifiche14

git push origin main15

git add backup-procedure.md

git commit -m "Aggiunta sezione monitoring"

Simuliamo lavoro di un collega (dal docente)1

Modifica da interfaccia web GitHub2

 3

I partecipanti fanno pull4

git pull origin main5

 6

Ogni partecipante fa una modifica locale7

echo "## Procedura di Monitoring" >> backup-procedure.md8

echo "- Controllo stato servizi ogni 30 min" >> backup-procedure.md9

 10

11

12

 13

Push delle modifiche14

git push origin main15

Push delle modifiche

git push origin main

Simuliamo lavoro di un collega (dal docente)1

Modifica da interfaccia web GitHub2

 3

I partecipanti fanno pull4

git pull origin main5

 6

Ogni partecipante fa una modifica locale7

echo "## Procedura di Monitoring" >> backup-procedure.md8

echo "- Controllo stato servizi ogni 30 min" >> backup-procedure.md9

 10

git add backup-procedure.md11

git commit -m "Aggiunta sezione monitoring"12

 13

14

15

7 . 3

Chieti 18 Novembre 2025 GIT a supporto dei tecnici UNIV

Gestione Conflitti

Generazione e Risoluzione Conflitti

🛠️ HANDS-ON: Conflitti reali

Il docente modifica lo stesso file dalla web interface

I partecipanti modificano localmente la stessa riga

1

2

 3

echo "## Backup Schedulati ore 02:00" >> backup-procedure.md4

git add backup-procedure.md5

git commit -m "Orario backup specificato"6

 7

Tentativo di push (fallirà)8

git push origin main9

 10

Pull per scaricare le modifiche remote11

git pull origin main12

CONFLITTO!13

 14

Risoluzione conflitto con editor15

Spiegazione dei marker <<<<<<< ======= >>>>>>>16

Risoluzione manuale e commit17

 18

git add backup-procedure.md19

git commit -m "Risolto conflitto orario backup"20

git push origin main21

echo "## Backup Schedulati ore 02:00" >> backup-procedure.md

git add backup-procedure.md

git commit -m "Orario backup specificato"

Il docente modifica lo stesso file dalla web interface1

I partecipanti modificano localmente la stessa riga2

 3

4

5

6

 7

Tentativo di push (fallirà)8

git push origin main9

 10

Pull per scaricare le modifiche remote11

git pull origin main12

CONFLITTO!13

 14

Risoluzione conflitto con editor15

Spiegazione dei marker <<<<<<< ======= >>>>>>>16

Risoluzione manuale e commit17

 18

git add backup-procedure.md19

git commit -m "Risolto conflitto orario backup"20

git push origin main21

Tentativo di push (fallirà)

git push origin main

Il docente modifica lo stesso file dalla web interface1

I partecipanti modificano localmente la stessa riga2

 3

echo "## Backup Schedulati ore 02:00" >> backup-procedure.md4

git add backup-procedure.md5

git commit -m "Orario backup specificato"6

 7

8

9

 10

Pull per scaricare le modifiche remote11

git pull origin main12

CONFLITTO!13

 14

Risoluzione conflitto con editor15

Spiegazione dei marker <<<<<<< ======= >>>>>>>16

Risoluzione manuale e commit17

 18

git add backup-procedure.md19

git commit -m "Risolto conflitto orario backup"20

git push origin main21

Pull per scaricare le modifiche remote

git pull origin main

CONFLITTO!

Il docente modifica lo stesso file dalla web interface1

I partecipanti modificano localmente la stessa riga2

 3

echo "## Backup Schedulati ore 02:00" >> backup-procedure.md4

git add backup-procedure.md5

git commit -m "Orario backup specificato"6

 7

Tentativo di push (fallirà)8

git push origin main9

 10

11

12

13

 14

Risoluzione conflitto con editor15

Spiegazione dei marker <<<<<<< ======= >>>>>>>16

Risoluzione manuale e commit17

 18

git add backup-procedure.md19

git commit -m "Risolto conflitto orario backup"20

git push origin main21

Risoluzione conflitto con editor

Spiegazione dei marker <<<<<<< ======= >>>>>>>

Risoluzione manuale e commit

Il docente modifica lo stesso file dalla web interface1

I partecipanti modificano localmente la stessa riga2

 3

echo "## Backup Schedulati ore 02:00" >> backup-procedure.md4

git add backup-procedure.md5

git commit -m "Orario backup specificato"6

 7

Tentativo di push (fallirà)8

git push origin main9

 10

Pull per scaricare le modifiche remote11

git pull origin main12

CONFLITTO!13

 14

15

16

17

 18

git add backup-procedure.md19

git commit -m "Risolto conflitto orario backup"20

git push origin main21

git add backup-procedure.md

git commit -m "Risolto conflitto orario backup"

git push origin main

Il docente modifica lo stesso file dalla web interface1

I partecipanti modificano localmente la stessa riga2

 3

echo "## Backup Schedulati ore 02:00" >> backup-procedure.md4

git add backup-procedure.md5

git commit -m "Orario backup specificato"6

 7

Tentativo di push (fallirà)8

git push origin main9

 10

Pull per scaricare le modifiche remote11

git pull origin main12

CONFLITTO!13

 14

Risoluzione conflitto con editor15

Spiegazione dei marker <<<<<<< ======= >>>>>>>16

Risoluzione manuale e commit17

 18

19

20

21

7 . 4

Chieti 18 Novembre 2025 GIT a supporto dei tecnici UNIV

Generazione e Risoluzione Conflitti

git config pull.rebase false - Merge

Quando eseguiamo un git pull, Git deve integrare le modifiche

remote (del server) con le modifiche locali.

I tre comandi che abbiamo visto servono a dire a Git come deve

fare questa integrazione.

🧩 1. git config pull.rebase false → Merge (comportamento

predefinito) 👉 Dice a Git di unire le modifiche remote usando un

merge commit.

Crea un nuovo commit di fusione ed è la scelta più “sicura” e

mantiene la storia completa e ramificata.

✅ Vantaggio: preserva la cronologia completa.

⚠️ Svantaggio: la storia può diventare più “ramificata” e

difficile da leggere.

7 . 5

Chieti 18 Novembre 2025 GIT a supporto dei tecnici UNIV

git config pull.rebase true → Rebase

👉 Dice a Git di spostare i commit locali sopra a quelli remoti,

come se fossero stati fatti dopo, in pratica riscrive la storia.

✅ Vantaggio: storia lineare e pulita

⚠️ Svantaggio: riscrive i commit → attenzione se il branch è

condiviso con altri.

git config pull.ff only → Fast-forward only

👉 Dice a Git di aggiornare il branch solo se può avanzare senza

conflitti, cioè senza creare merge né rebase. Funziona solo se

non ci sono commit locali.

✅ Vantaggio: storia perfettamente lineare e sicura.

⚠️ Svantaggio: fallisce se hai commit locali non presenti nel

remoto.

7 . 6

Chieti 18 Novembre 2025 GIT a supporto dei tecnici UNIV

Buone Pratiche nei Messaggi di Commit

🛠️ HANDS-ON: Analisi repository reali

Analizziamo commit ben scritti

git log --oneline -10

Esempio di commit messages efficaci:

"Fix: risolto bug calcolo spazio disco nelle procedure backup"

"Add: nuova procedura restore database PostgreSQL"

"Update: aggiornate credenziali accesso server backup"

"Doc: completata documentazione troubleshooting restore"

Comando git blame per vedere chi ha modificato cosa

git blame backup-procedure.md

Colleghiamoci a un repository complesso (es. PostgreSQL)

git clone https://github.com/postgres/postgres.git

cd postgres

git log --oneline -20

git log --grep="backup"

7 . 7

Chieti 18 Novembre 2025 GIT a supporto dei tecnici UNIV

Piattaforme Git Web-Based GitLab vs GitHub vs Bitbucket

GitHub

Piattaforma più popolare e diffusa per ospitare

codice.

Ottima integrazione con open source, GitHub

Actions, e una grande community.

Ideale per progetti pubblici o collaborazioni

open.

💡 Punto di forza: community e integrazione con

strumenti di sviluppo (CI/CD, issues, code

review).

8 . 1

Chieti 18 Novembre 2025 GIT a supporto dei tecnici UNIV

Piattaforme Git Web-Based GitLab vs GitHub vs Bitbucket

GitLab

Alternativa open source e self-hosted a GitHub.

Include in un’unica piattaforma tutto il ciclo

DevOps: repository, CI/CD, sicurezza,

monitoraggio.

Ideale per aziende o organizzazioni che

vogliono controllo completo dei dati.

💡 Punto di forza: pipeline CI/CD integrate e

completa automazione DevOps.

8 . 2

Chieti 18 Novembre 2025 GIT a supporto dei tecnici UNIV

Piattaforme Git Web-Based GitLab vs GitHub vs Bitbucket

Bitbucket

Piattaforma Atlassian integrata con Jira e

Confluence.

Supporta sia Git che Mercurial (storicamente).

Ottima per team aziendali già nell’ecosistema

Atlassian.

💡 Punto di forza: integrazione stretta con

strumenti di project management (Jira, Trello).

8 . 3

Chieti 18 Novembre 2025 GIT a supporto dei tecnici UNIV

Sicurezza e Best Practices

Cosa NON fare - Gestione Segreti

🛠️ HANDS-ON: Simulazione errore comune

ERRORE: Commit accidentale di password

echo "DB_PASSWORD=super_secret_123" > config.txt

git add config.txt

git commit -m "Aggiunta configurazione database"

1

2

3

4

 5

SCOPRIAMO L'ERRORE!6

Come rimuovere definitivamente il segreto7

git reset --soft HEAD~18

git reset HEAD config.txt9

rm config.txt10

 11

Versione corretta12

echo "DB_PASSWORD=\${DB_PASSWORD}" > config.txt13

echo "# Variabile d'ambiente DB_PASSWORD richiesta" >> config.txt14

git add config.txt15

git commit -m "Template configurazione database (senza credenziali)"16

SCOPRIAMO L'ERRORE!

Come rimuovere definitivamente il segreto

git reset --soft HEAD~1

git reset HEAD config.txt

rm config.txt

ERRORE: Commit accidentale di password1

echo "DB_PASSWORD=super_secret_123" > config.txt2

git add config.txt3

git commit -m "Aggiunta configurazione database"4

 5

6

7

8

9

10

 11

Versione corretta12

echo "DB_PASSWORD=\${DB_PASSWORD}" > config.txt13

echo "# Variabile d'ambiente DB_PASSWORD richiesta" >> config.txt14

git add config.txt15

git commit -m "Template configurazione database (senza credenziali)"16

Versione corretta

echo "DB_PASSWORD=\${DB_PASSWORD}" > config.txt

echo "# Variabile d'ambiente DB_PASSWORD richiesta" >> config.txt

git add config.txt

git commit -m "Template configurazione database (senza credenziali)"

ERRORE: Commit accidentale di password1

echo "DB_PASSWORD=super_secret_123" > config.txt2

git add config.txt3

git commit -m "Aggiunta configurazione database"4

 5

SCOPRIAMO L'ERRORE!6

Come rimuovere definitivamente il segreto7

git reset --soft HEAD~18

git reset HEAD config.txt9

rm config.txt10

11

12

13

14

15

16

9 . 1

Chieti 18 Novembre 2025 GIT a supporto dei tecnici UNIV

File .gitignore

Creiamo .gitignore per file sensibili

echo "*.log" > .gitignore

echo "config.local" >> .gitignore

echo ".env" >> .gitignore

echo "backup/*.sql" >> .gitignore

git add .gitignore

git commit -m "Add: gitignore per file sensibili"

9 . 2

Chieti 18 Novembre 2025 GIT a supporto dei tecnici UNIV

Documentazione con Git, Sphinx e RST

Documentazione Tecnica: un workflow moderno

Git – Versionamento della conoscenza

Permette di tracciare l’evoluzione della documentazione come il

codice

Supporta branching, pull request e code review anche per i

documenti

Garantisce collaborazione controllata e storico completo

Sphinx – Generatore di documentazione professionale

Converte file RST in HTML, PDF, ePub e altro

Supporta temi, estensioni, API docs auto-generate

Ideale per documentare progetti software, procedure e manuali

tecnici

RST (reStructuredText) – Linguaggio semplice e potente

Sintassi leggibile, minimale e altamente estensibile

Perfetto per guide, manuali, specifiche tecniche

Integrato nativamente con Sphinx

9 . 3

Chieti 18 Novembre 2025 GIT a supporto dei tecnici UNIV

Automazione con GitLab CI/CD (Sessione Avanzata)

Introduzione alle Pipeline

🛠️ HANDS-ON: Prima pipeline GitLab CI

Creiamo .gitlab-ci.yml:

Pipeline per generazione documentazione automatica

stages:

 - validate

 - build

 - deploy

validate_markdown:

 stage: validate

 script:

 - echo "Validazione sintassi Markdown..."

 - find . -name "*.md" -exec echo "Checking {}" \;

build_docs:

 stage: build

 script:

 - echo "Generazione HTML da Markdown..."

 - echo "Creazione PDF delle procedure..."

 artifacts:

 paths:

 - docs/

 expire_in: 1 week

deploy_docs:

 stage: deploy

 script:

 - echo "Deploy su server documentazione intranet..."

 only:

 - main

10 . 1

Chieti 18 Novembre 2025 GIT a supporto dei tecnici UNIV

Principali sistemi di Continuous Integration /

Continuous Deployment (CI/CD)

CircleCI

Servizio cloud-based molto flessibile e veloce.

Supporta pipeline complesse con configurazione in YAML.

Buone prestazioni e caching intelligente.

💡 Ideale per progetti multi-linguaggio e team che vogliono

scalabilità rapida.

Travis CI

Uno dei primi servizi CI popolari per GitHub.

Semplice da configurare (.travis.yml), ma oggi meno usato.

Ottimo per progetti open source, con build gratuite.

💡 Facile da usare, ma meno integrato rispetto a soluzioni più

moderne.

config.yml

.travis.yml

10 . 2

Chieti 18 Novembre 2025 GIT a supporto dei tecnici UNIV

https://github.com/consiglionazionaledellericerche/sigla-main/blob/master/.circleci/config.yml
https://github.com/consiglionazionaledellericerche/sigla-main/blob/master/.travis.yml

Principali sistemi di Continuous Integration /

Continuous Deployment (CI/CD)

GitLab CI/CD

Integrato nativamente in GitLab, non richiede servizi esterni.

Gestisce tutto il ciclo DevOps: build, test, deploy, sicurezza.

Supporta sia cloud che self-hosted runners.

💡 Ideale per chi vuole controllo e automazione completa nel

proprio ambiente.

GitHub Actions

Integrato direttamente in GitHub.

Usa workflow YAML (.github/workflows) per automatizzare test,

build e release.

Ampia libreria di azioni predefinite della community.

💡 Perfetto per progetti già su GitHub e integrazione continua

semplice.

.gitlab-ci.yml

docs.yml

maven.yml

release.yml

10 . 3

Chieti 18 Novembre 2025 GIT a supporto dei tecnici UNIV

https://github.com/consiglionazionaledellericerche/sigla-main/blob/master/.gitlab-ci.yml
https://github.com/istitutosuperioredisanita/sigla-main/blob/master/.github/workflows/docs.yml
https://github.com/istitutosuperioredisanita/sigla-main/blob/master/.github/workflows/maven.yml
https://github.com/istitutosuperioredisanita/sigla-main/blob/master/.github/workflows/release.yml

Grazie!

Qualche riferimento utile

"Nessun ladro, per quanto scaltro, potrà

mai rubarti la conoscenza"

“

”

marco.spasiano@cnr.it

https://github.com/mspasiano

https://github.com/consiglionazionaledellericerche

https://github.com/trasparenzAI

Questa presentazione in pdf

11

Chieti 18 Novembre 2025 GIT a supporto dei tecnici UNIV

mailto:marco.spasiano@cnr.it
https://github.com/mspasiano
https://github.com/consiglionazionaledellericerche
https://github.com/trasparenzAI
https://mspasiano.github.io/corso-git-unich/slides.pdf

